Neuroscience

Overt visual attention modulates
decision-related signals in ventral
and dorsal medial prefrontal cortex

eLife

Reviewed Preprint
v1 e April 23, 2025

Not revised Blair Shevlin, Rachael Gwinn, Aidan Makwana, Ian Krajbich

Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States *
Department of Psychology, The Ohio State University, Columbus, United States * Department of Economics, The
Ohio State University, Columbus, United States « Department of Psychology, University of California Los Angeles,

Los Angeles, United States

a https://en.wikipedia.org/wiki/Open_access
© Copyright information

eLife Assessment

This important study uses an innovative task design combined with eye tracking and
fMRI to distinguish brain regions that encode the value of individual items from those
that accumulate those values for value-based choices. It shows that distinct brain
regions carry signals for currently evaluated and previously accumulated evidence.
The study provides solid evidence in support of most of its claims, albeit with current
minor weaknesses concerning the evidence in favour of gaze-modulation of the fMRI
signal. The work will be of interest to neuroscientists working on attention and
decision-making.
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Abstract

When indicating a preference between two options, decision makers are thought to compare
and accumulate evidence in an attention-guided process. Little is known about this process’s
neural substrates or how visual attention affects the representations of accumulated
evidence. We conducted a simultaneous eye-tracking and fMRI experiment in which human
subjects gradually learned about the value of two food-lotteries. With this design we were
able to extend decisions over a prolonged time-course, manipulate the temporal onset of
evidence, and therefore dissociate sampled and accumulated evidence. Consistent with past
work, we found correlates of sampled evidence in ventromedial prefrontal cortex (vimPFC),
and correlates of accumulated evidence in the prefrontal and parietal cortex. We also found
that more gaze at an option increased its choice probability and that gaze amplified sampled-
value signals in the vmPFC and ventral striatum. Most importantly, we found that gaze
modulated accumulated-value signals in the pre-supplementary motor area (pre-SMA),
providing novel evidence that visual attention has lasting effects on decision variables and
suggesting that activity in the pre-SMA reflects accumulated evidence and not decision
conflict. These results shed new light on the neural mechanisms underlying gaze-driven
decision processes.
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Introduction

Many decisions involve a process of value computation and comparison between options. Imagine
you are planning a vacation based on online travel-guides describing two locations. As you
research these options, you sample pieces of information that support one option or another to
varying degrees. For example, one destination might have cheaper flights while the other has
cheaper hotels. Additionally, some information may attract more of your attention, such as
pictures of waterfalls or ancient ruins. As you evaluate your options, you must integrate these
pieces of information and eventually decide when to stop and make a final decision.

Decisions like this are thought to rely on a bounded, evidence-accumulation process that depends
on factors such as the value of the sampled information and shifts in attention. These factors
produce reliable patterns in choice, response-time (RT), and eye-tracking data (Ashby et al.,

2016 3; Callaway et al., 2021 (Z; Gluth et al., 20182 ; Krajbich et al., 2010 ; Smith & Krajbich,
20182

Tavares et al., 2017 & ; Gwinn et al., 2019 (@; Bhatnagar & Orquin, 2022 (7). The quantitative

relations between these measures argue for an evidence-accumulation process.

Sequential sampling models (SSMs) offer a framework to understand this deliberative choice
process. SSMs vary in specific details, but generally share some core features. When faced with a
decision, people begin to sample information in favor of each option. This information is
evaluated and converted into relative evidence for one option or the other.

Relative evidence builds up over time until there is enough to commit to an option (Busemeyer &
Townsend, 1993 @ ; Ratcliff & Smith, 2004 2).

the decision variable - the amount of accumulated evidence.

Each option has its own input. In the context of value-based decisions, the input represents the
value of the currently considered piece of information. For a given option, the average input value
is generally assumed to be constant over the course of the decision but does vary randomly from
one instant to the next due to stochasticity in the sampling process (Shadlen & Shohamy, 2016 %).

Integrators accumulate the stochastic sequences of sampled input values. Typically, each option
has its own integrator (Busemeyer & Townsend, 1993 @; Gold & Shadlen, 2007 (2 ; Krajbich &
Rangel, 2011 @; Usher & McClelland, 2001 & ; Wang, 20022 ) which accumulates the evidence from
that option’s input, but is also inhibited by the other options’ inputs or integrators. Thus, each
integrator represents the accumulated, relative evidence favoring a given option. Once one of the
integrators’ accumulated evidence reaches a pre-determined threshold, the corresponding option
is chosen. In contrast to the input values, these accumulated values dynamically evolve over the
course of the decision.

The neural inputs and accumulated values have been successfully identified in perceptual
decision making (for recent reviews see: (Forstmann et al., 2016 & ; Hanks & Summerfield, 2017 (4;
O’Connell et al., 2018 @ ; Ratcliff et al., 2016 (%), but it has proven more challenging for value-based
decisions. The main reason is that decisions are typically very quick, with RTs shorter than the
time resolution of functional magnetic resonance imaging (fMRI) (but see Gluth et al., 2012(#).
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Evidence for the neural substrates of value-based SSMs have typically come as trial-level measures
correlating with model parameters (Hare et al., 2011 & ; Rodriguez et al., 2015 (3), scalp-level
electric activity from electroencephalography (EEG) (Polania et al., 2014 ), or a combination of
the two (Pisauro et al., 2017 ). Taken together, these studies have implicated a fronto-parietal
network underlying value-based decision-making, with more ventral/frontal regions serving as
inputs (for reviews see: Bartra et al., 2013 (%; Clithero, 2018 (%) and more dorsal/parietal regions
serving as integrators.

Despite their many strengths, these past value-based experiments have been limited by their
inability to determine whether purported integrator regions are accumulating evidence or instead
representing unchosen values (Boorman et al., 2011 2; Kolling et al., 2016 (2 ; Wittmann et al.,
2016%), decision conflict (Fromer et al., 2024 (2 ; Hunt et al., 20182 ; Kaanders et al., 2021 ;
Kolling et al., 2012 ; Shenhav et al., 2014 (%, 2016 (3; Vassena et al., 2020 @), or time on task
(Holroyd et al., 2018 %). In most experiments, these variables are highly correlated and difficult to
distinguish. Increasing the value of the worse option while holding the better option constant will
simultaneously increase the perceived conflict, increase the deliberation time, and slow the rate of

evidence accumulation.

To distinguish between accumulated evidence and the other confounding explanations, we sought
a factor that modulates accumulated evidence within a decision, independent of time. For this we
turned to visual attention, measured with eye-tracking. Research on the attentional drift diffusion
Orquin, 2022 (% ; Krajbich et al., 2010 & ; Smith & Krajbich, 20194 ; Westbrook et al., 2020 2;
Sepulveda et al., 2020 @). This means that current gaze location should amplify value signals in the
input regions, and that the balance of gaze allocation over the course of the decision should
amplify accumulated evidence signals in the integrator regions. Both human and non-human
primate research has confirmed gaze effects on value inputs in the orbitofrontal cortex (Lim et al.,
2011; McGinty et al., 2016 %; Rich & Wallis, 2016 % ; Hunt et al., 2018 &2 ; but see McGinty, 2019(2).
However, it has yet to be shown that these gaze-modulated inputs are integrated into accumulated
decision values. Gaze modulated signals in purported integration regions would provide critical
evidence against the alternative explanations (i.e., conflict, time, or unchosen value).

Here, we present the results of an fMRI experiment designed to provide evidence that integrator
regions accumulate gaze-weighted evidence. Our approach was to slow down the decision process
by gradually presenting choice-relevant information. Our task design allowed us to extend the
decision-making period to approximately a minute, while also allowing us to dissociate the inputs’
sampled value (SV) signals from the integrators’ accumulated value (AV) signals (Gwinn, 2019 %).
The inputs represent the perceived value of stimuli currently on the screen, while the integrators
represent the values of previously presented stimuli within that choice problem. We
simultaneously collected eye-tracking data, allowing us to test whether gaze modulates SV and AV
representations. To preview the results, we found evidence for gaze-weighted SV signals in the
reward network - the ventromedial prefrontal cortex (vmPFC) and ventral striatum - and gaze-
weighted AV signals in the pre-supplementary motor area (pre-SMA) in the dorsomedial prefrontal
cortex.

Results

Experiment description

Our choice task builds on an extensive literature examining choices between familiar snack foods.
Instead of choosing between two food items, which typically only takes a few seconds, we asked
subjects to choose between two food lotteries. A lottery consisted of 3-6 different items, each with a
different probability of being selected. Subjects did not know anything else about the lotteries;

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1 30f34


https://doi.org/10.7554/eLife.103846.1

7 eLife

they had to learn about them from experience (Hertwig et al., 2004). Specifically, subjects sampled
arandom draw from both lotteries every 4-8 seconds. They continued to sample random draws
until they were ready to stop and choose one of the two lotteries (Fig. 1). Choosing a lottery led
to a final random draw from that lottery, revealing the actual food that the subject would receive if
that trial was rewarded at the end of the experiment.

We placed no explicit limit on the number of draws subjects could sample within each trial (i.e.
pair of lotteries). To prevent subjects from spending the entire session on a single trial, we gave
them 45 minutes to make at least 60 choices. Subjects were informed that any unmade choices
would be randomly completed by the computer, and any trials beyond 60 would be added to the
list from which the rewarded trial would be drawn. If a subject were to sample the same number
of stimuli in each trial, the optimal number would be seven. However, subjects could (and did)
vary their number of samples throughout the experiment; we observed substantial variability in
the number of samples per trial within most of our subjects (mean number of samples = 6.37 and
mean within-subject SD = 2.61).

We constructed each trial’s sequence of items pseudo-randomly to minimize the correlation
between the sampled value (SV) (i.e., the difference between the left and right values of the
currently presented stimuli) and the accumulated value (AV) (i.e., the sum of SV at a given
timepoint within a trial) (see Methods). For the first sample in each trial, SV and AV were always
equal. After subsequent samples, SV diverged from AV, yielding two distinct time courses to look
for in the fMRI data (Fig. 2(@).

To measure the subjective value of each stimulus, we separately asked subjects to rate all the food

items. Before entering the scanner, subjects rated 148 unique food items based on how much they

would like to eat them at the end of the experiment. These ratings were incentivized (see Methods)
and we retained only the positively rated items (0 to 10) for the choice task. We used each subject’s
ratings to calculate SV and AV.

Behavioral results

A core assumption of SSMs is that individuals decide based on the evidence accumulated over the
course of the decision. We thus anticipated that subjects would choose in line with AV and not just
the most recent SV in the trial. We tested this key assumption with a mixed-effects logistic
regression of choosing the left lottery on SV and AV at the time of choice. Subjects chose in line
with both (AV excluding the final samples: g = 0.062, SE= 0.010, p < 0.001; SV: B = 0.257, SE= 0.024, p
<0.001) (Fig. 3A[@). The larger coefficient for SV compared to AV is an inevitable consequence of
an SSM choice process. For any data generated by such a model, regressing the probability of
choosing an option on the final SV and the total AV would produce larger coefficients on the final
SV.

A second feature of SSM data is that easier decisions generally take less time (i.e., fewer samples).
Therefore, we expected a negative correlation between the number of samples and the absolute
difference in expected value between the two lotteries, as well as a higher probability of
terminating a trial when the absolute value difference (| AV|) is higher. A mixed-effects regression
of log(n samples) on the absolute expected value difference between the two lotteries revealed a
negative relationship (g =-0.025, SE = 0.009, p = 0.006, two-sided t-test). A mixed-effects logistic
regression of P(stop sampling) on |AV| also revealed a significant positive relationship (B = 0.062,
SE =0.009, p < 0.001, two-sided t-test). These tests confirm that our subjects were sampling more in
more difficult trials.

A third behavioral pattern predicted by the aDDM and other gaze-based SSMs is that individuals
should generally choose options that they have looked at more (Krajbich et al., 2010 &2; Thomas et
al., 20193 ; Westbrook et al., 2020 %). We thus anticipated a positive correlation between choice
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Figure 1.

Task timeline.

Subjects chose between two snack food lotteries on each trial. Subjects learned about the lotteries through random food
draws. Every 4-8 seconds, subjects sampled a new draw from each lottery. They were allowed to sample as many times as
they wanted but were incentivized to sample approximately 7 draws per trial. Sampled food draws were presented for 2
seconds, followed by a fixation cross appearing for 2-6 seconds with random jitter. The trial ended when the subject chose
the left or right lottery, using the respective index finger. Upon making their choice, subjects were presented with a food
drawn from their chosen lottery.

Choice

Figure 2.

Example trial with the sampled value and accumulated value.

The sampled value (SV; red) and accumulated value (AV; black) are plotted for this example trial. For the first draw, the SV and
AV are identical. However, as the trial proceeds, the two signals diverge. In the model, a choice is made when the AV reaches

a pre-specified decision boundary.
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Figure 3.

Choice data.

(a) The probability of choosing left based on the left - right value difference for both SV and AV. As the value difference
becomes greater in favor of one option, the probability of choosing that option increases, for both SV and AV. (b) The effect of
gaze on choice. The longer that subjects looked at one lottery over the other, over the course of the whole trial, the more

likely they were to choose that lottery.

Value Type

@ Accumulated
@ Sampled

1.00+

0.751

P(Choose Left)
o
1
o

0.251

0.001

-1 0 1
Dwell Difference [sec]
(Left - Right)

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1

6 of 34


https://doi.org/10.7554/eLife.103846.1
https://doi.org/10.7554/eLife.103846.1

7 eLife

and relative dwell time over the course of the whole trial. We added dwell proportion advantage
(left — right dwell time divided by total dwell time) to the choice regression and observed a positive
effect on choosing the left lottery ( =1.642, SE = 0.459, p < 0.001).

To be certain that gaze-weighted evidence accumulated over the course of the whole trial, and not
simply on the final sample of the trial, we excluded the final sample from each trial and re-ran the
previous regression. All regressors were significant and positive (SV: B = 0.290, SE = 0.028, p <.001;
AV: 3 =0.059, SE = 0.011, p < 0.001; dwell proportion advantage: B = 1.636, SE = 0.462, p < 0.001).
Thus, the influence of dwell time on choice occurred over the course of the entire decision, not
simply on the final sample (Fig. 3BX®).

Neuroimaging results

Our general strategy for the fMRI data was to identify regions with BOLD activity correlating with
the time series of |SV| or |AV|. We primarily focused on the absolute value differences since we
were looking for evidence in favor of making any choice, not specifically the left or right choice.
This way we could identify the key components of the SSM choice process: the inputs and the
integrators. We then tested whether these representations were modulated by gaze.

We tested the following hypotheses: (1) vmPFC and striatum contain input but not integrator
representations; (2) the vmPFC and striatum input representations are modulated by gaze; (3) the
pre-supplementary motor area (pre-SMA), the intraparietal sulci (IPS), and dorsolateral PFC
(dIPFC) contain integrator but not input representations; (4) the pre-SMA, IPS, and dIPFC integrator
representations are modulated by accumulated gaze.

All general linear models (GLM) included variants of |SV| and lagged |AV|, either gaze weighted
or not, interacted with boxcar functions covering each sample period (2 seconds). We use lagged
|AV| (i.e., AV that excludes the current sample’s SV) because that helps to decorrelate |ASV| and |
AAV| and ensure that any neural correlations with |AAV| are not due to the currently presented
stimuli. In addition to the regressors of interest, each GLM contained a stick function for the
button press onset, modulated by lagged |AV|, as a nuisance regressor event, as well as a boxcar
function during the feedback screen, modulated by the value of the received item. We also added
motion parameter time series to account for variation due to motion.

GLM 1: Sampled and Accumulated Value Results

The variables of interest in GLM 1 were absolute sampled value difference (| ASV|) and absolute
accumulated value difference (| AAV|) where [a4V| = | $Z1ASV,|, t is in units of draws (i.e., pairs of
samples), and T is the current draw. Note again that we sum |AAV| to T-1 in order to exclude the
current sample.

We first investigated the vimPFC and striatum, regions that we hypothesized represent the inputs
(i.e., SV). Looking specifically at BOLD activity in the vimmPFC ROI defined in Bartra et al. (2013) 2,
we found a positive correlation with |ASV| (peak voxel x =-8,y = 56, z = -2; p < 0.05) but no
significant correlation with |AAV| (peak voxel x = 6,y = 38, z = 26; p = 0.14) (Fig. 4A®). In contrast,
the striatum showed no significant relationship with either |ASV | or |AAV | (peak voxel: x = 16,y
=20,z =12; p=0.18 and peak voxel: x = 28,y =-10, z = -8; p = 0.13, respectively). A contrast analysis
revealed that the vmPFC indeed correlated more strongly with |ASV| than with |AAV| (£(22) =
3.52, p =.002), as did the striatum (t(22) = 2.24, p = .035).

We next investigated the pre-SMA, IPS, and dIPFC regions, which we hypothesized represent the
integrated values (i.e., AV). In the pre-SMA, whose ROI we defined based on Hare et al. (2011) @,
we found a significant, positive relationship between BOLD activity and |AAV| (peak voxel: x =4,y
=12,z =50; p < 0.001), but no relationship with |ASV| (peak voxel: x = 8,y = 16, z = 54; p = 0.56) (Fig
4B ). In the IPS, identified with the Harvard-Oxford Cortical Structural Atlas, we also saw a
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Figure 4.

Regions responding to sampled and accumulated value

(a) vmPFC showed a significantly positive correlation with |ASV|, but did not respond to |AAV|. (b) Both pre-SMA and IPS (as
well as the dIPFC, not pictured) showed a significantly positive correlation with |AAV|, but no correlation with |ASV|. Voxels

thresholded at p <.05.
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significant increase in activity as | AAV | increased (peak voxel: x =42,y =-48, z = 38; p < 0.001), but
no relationship with |ASV| (peak voxel: x = 38,y = -66, z = 46; p = 0.30) (Fig. 4C ). In the dIPFC,
whose ROI we defined based on Hare et al. (2011) 2, we found the same pattern as the pre-SMA
and IPS. There was a significantly positive relationship between BOLD activity and |AAV| (peak
voxel: x =42,y = 34, z = 28; p < 0.001), and no relationship between BOLD activity and |ASV| (peak
voxel: x =40, y = 38, z = 26; p = 0.55). Contrast analyses revealed that these three regions all
correlated more strongly with |AAV| than with |ASV| (pre - SMA: t(22) = 2.87, p = .009; IPS: t(22) =
2.80, p =.010); dIPFC: t(22) = -2.10, p = .047).

In summary, we found evidence that the vimPFC represents inputs but not integrators, while the
pre-SMA, IPS, and dIPFC represent integrators but not inputs (Fig. 52).

GLM 2: Gaze Weighted Sampled and Accumulated Values

Having identified input and integrator regions, we next asked whether the activity in these regions
was affected by gaze. The aDDM (and other gaze-weighted SSMs) predict that gaze to one option
should amplify that option’s value relative to the other option (Krajbich et al., 2010 & ; Thomas et
al., 20193 ; Westbrook et al., 2020#). Consider a simple model where an option’s value is
weighted by the proportion of time during which it is looked at. Imagine two trials with the same
pair of values, 7 on the left and 3 on the right. In Trial A, the subject looks left 30% of the time and
right 70% of the time. In Trial B, the subject looks left 70% of the time and right 30% of the time. In
Trial A, the net input value (“drift rate”) would be |[0.3-7 - 0.7 - 3| = 0. In Trial B, the drift rate
would be |0.7-7 - 0.3 3| =4. In Trial A, the value advantage for the left option is canceled out by
the gaze advantage for the right option. In Trial B, both the value and gaze advantage favor the left
option, leading to strong evidence in favor of a left choice. In sum, there is stronger evidence when
gaze difference is aligned with value difference. This should be true for both SV and AV, though SV
is only affected by gaze during the current draw, while AV is affected by gaze over the entire trial.

To test this prediction, GLM 2 used the gaze-weighted values of the items, looking at the BOLD
signal for the entire duration of each presentation of food pairs. The sampled gaze-weighted
values (SV;,,.) Were derived, as in the example above, by multiplying the proportion of left gaze
time with the left value, and the proportion of right gaze time with the right value, within a
sample. Accumulated gaze-weighted values (AV,,,) were the sums of SV,,. across samples. GLM
2 included both |ASVGaze| = |SVGaze Left = SVGaze Right| @A |AAVGaze| = [AVGaze Lef ~ AVGaze Right |-
Again, to reduce the correlation between sampled and accumulated values, AAV;,,, did not
include the currently presented pair of food items.

In the vmPFC, we found a significant correlation with |ASV,,.| (peak voxel: x =-4,y=36,z=4;p
<0.005) but no effect of |AAV,,.| (peak voxel: x = -8,y = 36, z = 2; negative beta, p = 0.42). The
striatum also showed a correlation with |ASV,,,.| (peak voxel: x =8,y =10, z =- 6; p < 0.01), but
no corresponding effect for |AAV;,,.| (peak voxel: x =-20, y = 4, z = -6; negative beta, p = 0.18).

In contrast, in the pre-SMA we found a significantly positive relationship with |AAV,,,.| (peak
voxel: X =4,y =18, z = 54; p = 0.03), but a non-significant correlation with |ASV,,.| (peak voxel: x
=-8,y =16,z = 54; p = 0.06). The IPS, on the other hand did not seem to respond to either |
ASVGazelOF |AAVGaze| (Peak voxel: X =-14,y =-54,z = 48; p = 0.12, and peak voxel: x =48,y =-34, z
= 44; p = 0.48 respectively) (Fig. 6 2). Similar to the IPS, the dIPFC did not appear to incorporate
gaze, responding to neither |ASV,,,| nor |AAVg,,.| (peak voxel: x = 42,y = 28,z = 26; p = 0.20;
peak voxel: x =-46, y = 26, z = 18; p = 0.20, respectively).
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Figure 5.

Beta plots from the vmPFC, striatum, pre-SMA, IPS, and dIPFC (GLM1).

Displayed are regression coefficients from each region for absolute sampled value difference (|ASV|) and absolute
accumulated value difference (| AAV|). Both vmPFC and striatum show a similar pattern of BOLD activity that scales positively
with |ASV|, but does not respond to |AAV|. The opposite pattern can be seen in the pre-SMA, IPS, and dIPFC which both
show a strong positive correlation between BOLD activity and |AAV|, but no relationship to |ASV|.

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1 10 of 34


https://doi.org/10.7554/eLife.103846.1
https://doi.org/10.7554/eLife.103846.1

Figure 6.
Regions responding to sampled gaze-weighted value
(SGWV) and accumulated gaze-weighted value (AGWV).

SGWV correlates with activity in (a) vmPFC, and (b) striatum, while AGWV correlates with activity in (c) pre-SMA. Voxels
thresholded at p <.05.
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GLM 3: Gaze Contrast Results

Another way to test for the effect of gaze on value representations is to directly contrast cases
where gaze is focused on the better option to cases where gaze is focused on the worse option. As
described earlier, there should be more evidence when gaze and high value are aligned than when
they are misaligned. Thus, regions representing accumulated evidence should show a significant
effect in this contrast. The sign of that effect is obvious in the case of SV. For any given sample, if
the current left item is better than the right item, then we should see stronger input activity when
the subject is currently looking left compared to right. The prediction is less obvious for the
integrators and accumulated values. Suppose the left lottery is better than the right lottery: how
should the current gaze location affect the integrator activity? What matters for the integrator
activity is where the subject has looked more in the past, since the integrator represents all the
evidence accumulated so far. As it turns out, at any time point ¢, the gaze location at ¢ is negatively
correlated with the amount of time spent looking at that location so far in the trial. That is, if the
subject is currently looking left then she has, on average, spent more time looking right up until
that point.

We established this fact with a mixed-effects logistic regression of whether subjects at time t were
looking left (1) or right (0) on AV, SV, and dwell advantage up until ¢ - 1. The regression revealed a
significantly negative beta on dwell advantage (B =-0.308, p < 0.001), indicating that subjects had
looked at the currently fixated lottery at time ¢ less than the other lottery. What this means is that
if the left lottery is better than the right lottery, we should see stronger integrator activity when
the subject is looking right compared to left.

To test these predictions, we ran a third GLM (GLM3) that included SV, AV, a dummy variable for
gaze location (left = 1, right = 0) at time ¢, and the interactions of this dummy with both SV and AV.

For the first hypothesis we focused on the fixated vs. non-fixated contrast for sampled value (SV -
gazejef; > SV - gazeyigny). Since this is a replication of Lim et al. (2011), we report the results of one-
sides statistical tests. Here we found a marginally significant effect in the vmPFC (peak voxel: x = 4,
y =54, z = -2; one-sided p = 0.05; Fig. 72 ). We found no such effect in the striatum (peak voxel: x =
-16,y = 18, z = -6; negative beta, one-sided p = 0.17).

We also looked for these effects in our integrator regions. While some of the effects were marginal,
they were in the opposite direction as expected: pre-SMA (negative beta, peak voxel: x=4,y =8,z =
52; p = 0.14), IPS (negative beta, peak voxel: x = 34, y =-50, z = 46; p = 0.07), and dIPFC (negative
beta, peak voxel: x =-46, y = 26, z = 18; p = 0.09).

For the second hypothesis, we focused on the fixated vs. non-fixated contrast for accumulated
value (AV - gazeje; > AV - gazeygpy). Here we found that activity was marginally lower for fixated
versus non-fixated lotteries in the pre-SMA (peak voxel: X = -6, y = 14, z = 58; p = 0.06), and non-
significantly so in the IPS (peak voxel: x = 36, y = -60, z = 30; p = 0.12) (Fig. 6%) and the dIPFC (peak
voxel: x =42,y =28,z =26;p =0.17).

We also looked for these effects in our input regions. Here we found no effects in the vmPFC (peak
voxel: x =4,y =58,z =-2; p=0.13) and marginal effects in the striatum (peak voxel: x = 32, y = -10,
z =-10; p = 0.07). If anything, these perhaps reflect a trace of the input activity from the previous
sample.

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1 12 of 34


https://doi.org/10.7554/eLife.103846.1

Figure 7.

Representation of gaze-weighted evidence.

The vmPFC shows a positive interaction between sample value (SV) and gaze location, while the pre-SMA shows a negative
interaction between accumulated value (AV) and gaze location. Both results are consistent with gaze enhancing the value of

fixated items.
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Modeling a non-uniform temporal weighting function

While sequential sampling models like the DDM assume equal weighting of information during
evidence accumulation, other models allow for information sampled at different time points to
differentially impact choice. For example, information that arrives early (i.e., primacy) or late (i.e.,
recency) can preferentially influence decision-making (Usher & McClelland, 2001 ). This could
especially be the case in our task where information has to be integrated over a long period of
time.

To account for temporal biases during evidence accumulation, we fit participant data with a model
that incorporates primacy and recency biases into the sequential sampling process (Galdo et al.,

2022 3; Pooley et al., 2011 ). Within a trial ¢, the weight of sample i is determined by the
following temporal weighting function:

we(@) = [1 = (1 —eh)(1 =& "] -m +7, M

where g, and g, are weights on primacy and recency, respectively, n is a lower bound on the
weight of any sample, and N; is the number of samples on trial t.

In the context of the current experiment, we assume that decision-makers accumulate evidence
(AV) based on the sum of sampled evidence (SV) weighted by the temporal weighting function:

AVon-uniforme = vat we (DSV (D). )
At the time of choice, the decision-maker chooses according to the logit function:

P,(Left Lottery) = : L

Tro P non—aniormt (©)
with inverse-temperature parameter p governing the how strongly AV on_yniform,c gOverns the
selection of the higher value lottery.

For models incorporating visual attention, the only modification is to use SV, instead of SV.

Behavioral model results

We observed a substantial recency bias, with all participants showing g, > &y when using SV and
all but one participant showing €, > &, when using SV, (Fig. 8(2) as inputs. Independent
samples t-tests (with the Welch approximation to degrees of freedom) confirmed that participants’
g, parameters were significantly larger than their ¢, parameters, for both SV (¢(36) = 12.54, p =
1071 and SV, (t(20) = 7.25, p = 107%) inputs. Goodness-of-fit measures based on the Bayesian
Information Criterion (BIC) also favored a non-uniform temporal weighting function (No gaze: BIC
=1262; Gaze: BIC = 1593) over a uniform temporal weighting function (No gaze: BIC = 1307; Gaze:
BIC = 1658). However, it is worth noting that the recency bias is surely over-estimated based on
our parameter-recovery exercise (Methods) and the bias introduced by allowing participants to
choose when to stop collecting evidence (Discussion).

fMRI model results

To identify brain regions that encoded |AVyon yniform |» We tested whether activation
parametrically varied as a function of these new values using updated versions of the previously
fit GLMs in the previously defined ROIs. Within each ROI, we used a FWE corrected threshold of
p<0.05 and cluster-forming threshold of p<0.001 with 5000 permutations.
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Figure 8.

Non-uniform temporal weighting.

In both gaze-weighted and non-gaze-weighted models, participants showed stronger recency than primacy effects, both in
terms of (A) the model parameters, and (B) the resulting temporal weighting functions averaged across all trials. Error bars

are standard errors clustered by participant.
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For GLM1 we again found significant correlations between | AV}, yniform | and BOLD activity in
the pre-SMA (peak voxel x = 2, y = 18, z = 50; p = 0.0006), IPS (peak voxel x =46,y =-46,z=42;p =
0.0004), and dIPFC (peak voxel x =42, y = 34, z = 28; p = 0.0002). Additionally, we found weaker
correlations in the vimPFC (peak voxel x = 4, y = 38, z = 24; p = 0.010) and striatum (peak voxel x =
16,y =16,z =-10; p = 0.032).

The results for GLM2 with gaze-weighted AV}, oj-uniform Were very similar, with significant
correlations in the pre-SMA (peak voxel x = 2, y = 18, z = 50; p = 0.0008), IPS (peak voxel x =50,y =
-40, z = 46; p = 0.0002), and dIPFC (peak voxel x =42,y = 34, z = 28; p = 0.0006), as well as a weaker
correlation in the vimPFC (x = 6, y = 38, z = 24; p = 0.030).

For GLM3, where results were already marginal, the new analysis with |AVy5n yniform | yielded no
significant clusters.

Discussion

In this paper we presented results from a simultaneous eye-tracking and fMRI study of value-
based decision-making, using an expanded-judgment task where subjects sampled from, and then
chose between food lotteries. We found that the vimmPFC, and to a lesser extent the striatum,
represent sampled input values, and the pre-SMA, IPS, and dIPFC appear to compute accumulated
values. We found that sampled value signals in vimmPFC and striatum are modulated by gaze
allocation (Lim et al., 2011; McGinty et al., 2016 @), and more importantly, we found that this gaze
modulation extends to accumulated value signals in pre-SMA.

These results provide novel evidence for the neural mechanisms underlying the SSM process, as
exemplified by the DDM, which appears to govern many types of decisions (Busemeyer, 1985 (%;
Ratcliff, 1978 2). The gaze modulation of the accumulated value signals in the pre-SMA provides
critical evidence that this region indeed represents accumulated evidence, as opposed to unchosen
values (Boorman et al., 2011 @; Kolling et al., 2016 2 ; Wittmann et al., 2016 ©), decision conflict
(Hunt et al., 20183 ; Kaanders et al., 2021 % ; Kolling et al., 20122 ; Shenhav et al., 20143, 2016
Vassena et al., 2020 @), or time on task (Holroyd et al., 2018 2). While accumulated evidence is
typically correlated with these other measures, we were able to dissociate them by taking
advantage of the fact that accumulated evidence, but not the other measures, are modulated by
gaze location. Value is amplified by gaze (Smith & Krajbich, 2019(%), leading to stronger value
signals in the brain when the decision maker is looking at the higher value option. This is what we
observed in the vmPFC and striatum for input values, and in the pre-SMA for accumulated values
— consistent with an SSM account.

These findings were made possible by considering the role that visual attention plays in the
decision process. While SSMs capture choice behavior and RTs extremely well, most do not
consider the effects of attention. Attention is thought to shift over the course of the decision,
amplifying the attended inputs and/or inhibiting the non-attended inputs (Diederich, 1997 2 ;
Johnson & Busemeyer, 2005 (@; Roe et al., 2001 %). These shifts in attention are reflected in eye-

2013 2; Fiedler & Glockner, 20157 ; Folke et al., 2016 ; Glaholt & Reingold, 2009 ; Gwinn et al.,
20192; Janiszewski et al., 2013 @; Jiang et al., 2016 3 ; Kim et al., 2012 (2 ; Konovalov & Krajbich,
2016 3; Lopez-Persem et al., 2016 3; Orquin & Mueller Loose, 2013 2 ; Parnamets et al., 2015 Z;
Polonio et al., 2015 ; Russo & Leclerc, 1994 (2 ; Shi et al., 2012 2 ; Smith & Krajbich, 2018 2 ; Stewart
et al., 2016 (2; Vaidya & Fellows, 2015 (3 ; Venkatraman et al., 2014(%; Wang et al., 2010 &; Sheng et
al., 20203 ; Vanunu et al., 2021), and their effect on the choice process is captured by the

attentional drift diffusion model (aDDM) and other related SSMs (Ashby et al., 2016 & ; Fisher,
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2021 %; Glickman et al., 2019 ; Jang et al., 2021 (Z; Krajbich et al., 20102; Li & Ma, 2021 % ; Smith
& Krajbich, 2019 % ; Teoh et al., 2020 2 ; Westbrook et al., 20202 ; X. Yang & Krajbich, 2023 Z; Zilker
& Pachur, 2023 @).

Neural implementations of SSMs generally require at least two sets of neurons, one set to
represent the current information from the stimuli and a second set to integrate that information
over time. In the current study, the information being used to make decisions was subjective value
(i.e., utility). A large body of work has implicated the vmPFC and striatum in representing value
(Bartra et al., 2013@; Boorman et al., 20092 ; Chib et al., 2009(Z; Levy & Glimcher, 2011®).
Interestingly, our results confirm that these two regions do represent value information, but
primarily just for the presented stimuli. The integrated value information, which is what
ultimately determines the decision, is instead encoded in the pre-SMA, IPS, and dIPFC, regions that
have received less attention in the literature.

By using eye-tracking, our study extends previous work connecting computational models to fMRI
data. Our results align with Hare et al.’s (2011) proposed neural model in which the vmPFC
provides inputs to the pre-SMA and IPS. While the Hare model was based on dynamic causal
modeling results, our task provides a more direct test of the proposed neural network.
Additionally, our eye-tracking data allows us to identify additional features of the network. First,
we identify the striatum as an input region, a result that only appears in analyses that account for
gaze-weighted value (Lim et al., 2011). Second, we find that the pre-SMA is sensitive to gaze-
weighted accumulated value, while the IPS is not. The reason for this distinction between the pre-
SMA and IPS is unclear, but it does suggest that the pre-SMA is more likely to be the final decision-
making region, consistent with some recent studies (Juechems et al., 2017 (3; Pisauro et al., 2017 (3;
Rodriguez et al., 20157 ; Rouault et al., 2019). Of course, the recruitment of the pre-SMA may be
because our subjects made their decisions with a button press, which is supported by the
correlations between accumulated value and motor cortex activity. Had our study required eye-
movements to indicate a choice, we may very well have observed integrator activity in other
regions such as the frontal eye fields or posterior parietal cortex (O’'Connell et al., 2018 ).

The striatum activity is difficult to interpret. It showed no correlation with sampled or
accumulated value in the models without gaze. However, once gaze was included, the results were
somewhat contradictory. When analyzing gaze at the dwell level, we found greater striatal activity
in response to accumulated values, but when gaze was used as a modifier to the true value of each
item, we found greater striatal activity in response to the sampled input value. This may be due to
the limitations of running a GLM on the dwell level, since our TR was 2.6 seconds and dwells
lasted for 0.66 seconds (SE= 0.03 seconds). Additional research is needed to resolve this issue.

A major advantage of this study is its use of a task designed to slow down the decision process and
force sequential integration of information. Such expanded judgment tasks have been used to
study SSM assumptions in perceptual decision-making, more recently in combination with neural
recordings, but mostly with electrophysiology in rats and monkeys (Brunton et al., 2013 (%; Cisek et
al., 20093; Gluth et al., 20127 ; Tsetsos et al., 2012Z; T. Yang & Shadlen, 2007 2).

On the other hand, one concern with longer decision times is that decision-makers might either
under-weight (i.e., forget), or put too much weight on, early information. Our analysis of subjects’
temporal weighting functions did reveal a primacy effect, where the first sample in each trial was
overweighted, as well as a recency effect, where the last samples in each trial were also
overweighted. Nonetheless, using a temporal weighting function with these primacy and recency
effects did not substantially change the conclusions from our fMRI analysis. While these analyses
did reveal weak support for accumulator dynamics in the vimPFC and striatum, these results
should be interpreted with caution because adding recency effects into the accumulated-value
signal increased the correlation between |SV| and |AV| from 0.12 to 0.21. Moreover, the recency
effect is surely overestimated due to well-known statistical artifacts (Mullett & Stewart, 2016 2). In
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short, because decision-makers tend to terminate the decision process after strong pieces of
evidence, and because a strong piece of evidence will tend to have a large noise component,
information that appears at the end of a trial will appear to have a stronger influence on choices
than it should.

Taken together, we separated sampled input values from the overall decision value, or
accumulated value, and found a network of brain regions that are involved in an aDDM-like
choice process. This process involves passing sampled input values to an integrator which
responds to not only the values themselves, but also to the gaze-modulated values. These results
indicate that gaze effects on value representations are not epiphenomenal; rather, they reflect
how gaze is incorporated into the decision process, affecting how we perceive the value of each
option over the course of the entire decision.

Materials and Methods

Experimental Design and Statistical Analyses

Subjects

Twenty-eight undergraduate students at The Ohio State University participated in this study. Due
to time constraints, 4 subjects were unable to finish all 3 runs of the scan. One subject was
excluded for not choosing in line with their ratings. This left 23 subjects in the analysis (14 men, 9
women, average age: 22.61). Another 3 subjects could not be calibrated on the eye-tracker and so
are discarded from any analyses involving eye tracking (leaving 13 men, 7 women, average age:
22.9). All subjects were right-handed, had normal or corrected-to-normal vision, and no history of
neurological disorders. This study was approved by The Ohio State Biomedical Sciences IRB.

Stimuli and Tasks

Rating Task: Outside of the scanner, subjects rated 148 food items using a continuous rating scale
from -10 (extreme dislike) to 10 (extreme like), with 0 being indifference towards an item. To
choose their preferred rating, subjects moved the mouse across the rating scale and then clicked
the left mouse button when the cursor was at their desired value for the item. We used an
incentivization procedure for these ratings. There was a 50% chance that the rating task would be
used to determine the subject’s reward. In such cases, the computer would randomly select two
foods and the subject would receive the one with the higher rating. If both items were rated
negatively, the subject would not receive any food. Negative values (-10 to 0) were excluded from
the choice task except for two subjects who did not have enough positively valued items.

Choice Task: Once in the MRI scanner, subjects chose between pairs of lotteries. Lotteries were
constructed by creating 1000 potential lotteries of randomly selected items evenly split between
having 3, 4, 5, or 6 items. Each item in a lottery was then assigned a probability of being drawn,
with probabilities summing up to 1 in each lottery. For each of these lotteries we calculated its
expected utility by multiplying the subjective value (i.e., rating) of each item (V}) in the lottery by
its associated probability (P;) of being drawn, and summing the results

EU =X, P+ V, “)

where N is the total number of items in that lottery. Subjects were not told these probabilities, nor
were they told which items were in each lottery — they had to learn this every trial.

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1 18 of 34


https://doi.org/10.7554/eLife.103846.1

7 eLife

We tracked subjects’ eye movements in the scanner using an Eyelink 1000 plus (SR Research) set at
500 Hz. Eye position was monitored with the camera and infrared source reflected in the mirror
attached to the head coil. The eye tracker was calibrated at the beginning of the session.

Food items were sampled from the lotteries and presented on the screen one pair at a time. Each
draw was presented for 2 seconds, followed by a fixation cross for 2-6 seconds. This process
repeated until the subject made a choice. Once a subject was ready to choose a lottery, they used
the index finger of their left (right) hand to press a button corresponding to the left (right) lottery.
They were then presented with a random item from the lottery they had chosen (on the same side
of the screen as the chosen basket) for 2 seconds, indicating the food they would receive from this
trial, should it be randomly selected at the end of the study (Fig. 12).

We constructed each trial’s sequence of items pseudo-randomly to minimize the correlation
between the sampled value signal (|SV|; i.e., the absolute difference in sampled input values) and
the accumulated value signal (| AV |; i.e., the absolute difference in accumulated values). For the
first draw in each trial, sampled and accumulated value signals are equal. On subsequent draws,
the SV diverges from the AV signal, yielding two distinct time courses to look for in the fMRI data
(Fig. 2(@). Across subjects, |SV| and |AV| had an average correlation of 0.23 (SD = 0.15, min = 0.11,
max = 0.43), while |SV| and lagged |AV| (i.e., the variables in our GLMs) had an average
correlation of 0.12 (SD = 0.10, min = -0.01, max = 0.24).

The task structure was designed to incentivize subjects to average 7 samples per trial. They had 45
minutes to make 60 choices, and any trials that they did not complete by the end of the experiment
were made for them randomly by the computer. Any trials they completed beyond 60 were simply
added to the pool of potentially rewarded trials. At the end of the study, there was a 50% chance
that one of the choice trials would be randomly selected for payment (otherwise the rating task
was selected for payment), in which case the subject received the corresponding food from that
trial.

Outside of the scanner, subjects first completed a 5-minute practice section where they chose
between baskets made up of cars. After each trial, they were given feedback on how many samples
they took and were reminded that the goal was to take 7 samples on average. These choices were
not incentivized.

Temporal-weighting-function model fits

al., 2011 ; Wittmann et al., 2020 %). This method improves upon maximum likelihood estimation
(MLE) by simultaneously estimating parameters at both the subject- and group-level. This
hierarchical procedure constrains subject-level parameters and reduces the influence of outlier
data.

Group-level parameters were initialized with uninformative Gaussian priors with mean of 0.1 and
variance of 100. For all models, n was held constant at 1. During the expectation step, we estimated
model parameters (g, &, p) for each participant using MLE and calculated the log-likelihood of
their choices given the model parameters. During the maximization step, we calculated the
maximum posterior probability based on the observed choices and prior group-level parameters,
and then updated the group-level parameters to generate posterior parameter estimates. These
posterior parameter estimates were then used as the priors in subsequent steps in this procedure.
We iteratively repeated the expectation and maximization steps until convergence of the posterior
likelihood summed over group-level parameters exceeded a change of less than 0.0001 from the
previous iteration (for a maximum of 800 iterations). During this procedure, bounded free
parameters were transformed from Gaussian space to native model space using link functions
(e.g., sigmoidal function for g, &) to ensure accurate estimation near the bounds.
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We assessed parameter recovery of this model on simulated choices using best-fitting model
parameters. We then refit the simulated choices using the same MAP process described above. We
found strong Pearson’s r correlations between the generated and estimated parameter values (r >
.8; Fig. 9@), though both parameters were systematically over-estimated.

MRI Data Acquisition

MRI scanning was carried out at the OSU Center for Cognitive and Behavioral Brain Imaging. We
used a 3T Siemens Magnetom Prisma scanner with a 32-channel head array coil to collect the
neural data. Functional data were acquired with a T2*-weighted gradient-echo sequence (48 slices,
interleaved, with a field of view of 155xx1554, with an in-plane resolution of 3 mm isotropic and a
3mm slice gap, TR = 2600 ms, TE = 28 ms, 80° flip angle). Slices were oriented such that the anterior
side of the acquisition was raised dorsally by 30 degrees compared to the line formed by joining
the anterior commissure to the posterior commissure. A high-resolution MPRAGE anatomical scan
(256 slices, field of view 22xx256, with an in-plane resolution of 1 mm and no slice gap, TR = 1900
ms, TE = 4.44 ms, 12° flip angle) was also acquired for each participant. Each participant was
scanned in one 1.5-hour session, which included the three experimental runs (15 minutes each)
and the high-resolution MPRAGE anatomical scan. Additionally, a resting state scan (5 minutes)
and a DTI scan were acquired, but these data are not presented here. Stimuli were presented using
Psychtoolbox (Brainard, 1997; Kleiner et al., 20070101; Pelli, 1997) for MATLAB (MATLAB and
Statistics Toolbox, 2016) and displayed with a DLP projector onto a screen mounted in the rear of
the scanner bore.

MRI Preprocessing and analyses

Statistical parametric mapping (SPM12, Update Rev. Nr. 6905; Functional Imaging Laboratory,
University College London) was used to carry out the preprocessing of fMRI data. First, we
corrected for the different slice times per echo planar image (EPI) across the total volume (using
the bottom slice as a reference) and then realigned each volume in a run to the mean EPI volume
from that run. Next, the anatomical scan was coregistered with the MNI average of 152 brains
template, and the mean EPI per run was used to coregister all functional scans to this
coregeistered anatomical scan. In order to warp the EPIs to MNI space, SPM12’s normalise function
was applied to the coregistered anatomical scan and the resulting warping parameters were
applied to the coregistered EPIs. The resulting images were smoothed using an isometric Gaussian
kernel (8 mm full width at half maximum). First level GLMs were run using SPM on each subject
individually, including contrasts of interest. Runs were combined using fslmerge. We then used
FSL’s randomise function to run second-level, non-parametric significance tests with threshold-free
clustering and family wise error (FWE) correction to find significant clusters for the described
effects.

We used a canonical hemodynamic response function (HRF) without time derivatives. We modeled
the noise as an AR(1) process. We additionally used a high-pass filter set to 128 s. We also used
global signal normalization with a value of 0.8. We used no corrections for susceptibility
distortions. All general linear models (GLM) included variants of |ASV | and lagged |AAV |, either
gaze weighted or not, interacted with boxcar functions covering each sample period (2 seconds) —
see details below. In addition to the regressors of interest, each GLM contained the following
nuisance terms: a stick function for trial number, a stick function for the button press onset
modulated by lagged |AAV|, and a boxcar function during the feedback screen, modulated by the
value of the received item. We also added motion parameter time series to account for variation
due to motion.

In GLM1, in addition to the nuisance terms, we included the following regressors: |ASV| and
lagged |AAV|.
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Figure 9.

Correlation plots illustrating parameter recovery.
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In GLM2 in addition to the nuisance terms, we included the following regressors: |ASV;.| and
lagged |AAVGgzel-

In GLM3 in addition to the nuisance terms, we included the following regressors: |ASV|, lagged |
AAV|, and gaze location.

None of the regressors in the models were orthogonalized.

Prior to second-level statistical modeling, data were smoothed using a 6.0 mm? FWHM Gaussian
kernel. For the second-level analyses, we used permutation-based random-effects models to run
one-sample t-tests across subjects. For significance testing, we used FWE corrected threshold of

P<0.05 and cluster-forming threshold of p<0.001 with 5000 permutations.

Region of interest specifications

ROIs were based upon previously published brain atlas parcellations and relevant literature. We
used the Harvard-Oxford atlas for the intraparietal sulcus (IPS) and striatum (Desikan et al.,

were defined based on (Hare et al., 2011 @). The ventromedial prefrontal cortex (vmPFC) was
defined in (Bartra et al., 2013 ®).

Data Availability

Experiment and analysis code as well as Behavioral and eye-tracking data are available on the
Open Science Framework: https://osf.io/eyxvb/files/ .

fMRI statistical maps are available on Neuro Vault: upload in progress. Raw data is available upon
request.
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This study builds upon a major theoretical account of value-based choice, the 'attentional
drift diffusion model' (aDDM), and examines whether and how this might be implemented in
the human brain using functional magnetic resonance imaging (fMRI). The aDDM states that
the process of internal evidence accumulation across time should be weighted by the decision
maker's gaze, with more weight being assigned to the currently fixated item. The present
study aims to test whether there are (a) regions of the brain where signals related to the
currently presented value are affected by the participant's gaze; (b) regions of the brain
where previously accumulated information is weighted by gaze.

To examine this, the authors developed a novel paradigm that allowed them to dissociate
currently and previously presented evidence, at a timescale amenable to measuring neural
responses with fMRI. They asked participants to choose between bundles or 'lotteries' of food
times, which they revealed sequentially and slowly to the participant across time. This
allowed modelling of the haemodynamic response to each new observation in the lottery,
separately for previously accumulated and currently presented evidence.

Using this approach, they find that regions of the brain supporting valuation (vmPFC and
ventral striatum) have responses reflecting gaze-weighted valuation of the currently
presented item, whereas regions previously associated with evidence accumulation (preSMA
and IPS) have responses reflecting gaze-weighted modulation of previously accumulated
evidence.

Strengths:

A major strength of the current paper is the design of the task, nicely allowing the
researchers to examine evidence accumulation across time despite using a technique with
poor temporal resolution. The dissociation between currently presented and previously
accumulated evidence in different brain regions in GLM1 (before gaze-weighting), as
presented in Figure 5, is already compelling. The result that regions such as preSMA respond
positively to |AV| (absolute difference in accumulated value) is particularly interesting, as it
would seem that the 'decision conflict' account of this region's activity might predict the exact
opposite result. Additionally, the behaviour has been well modelled at the end of the paper
when examining temporal weighting functions across the multiple samples.

Weaknesses:

The results relating to gaze-weighting in the fMRI signal could do with some further
explication to become more complete. A major concern with GLM2, which looks at the same
effects as GLM1 but now with gaze-weighting, is that these gaze-weighted regressors may be
(at least partially) correlated with their non-gaze-weighted counterparts (e.g., SVgaze will
correlate with SV). But the non-gaze-weighted regressors have been excluded from this
model. In other words, the authors are not testing for effects of gaze-weighting of value
signals *over and above* the base effects of value in this model. In my mind, this means that
the GLM2 results could simply be a replication of the findings from GLM1 at present. GLM3 is
potentially a stronger test, as it includes the value signals and the interaction with gaze in the
same model. But here, while the link to the currently attended item is quite clear (and a
replication of Lim et al, 2011), the link to previously accumulated evidence is a bit contorted,
depending upon the interpretation of a behavioural regression to interpret the fMRI
evidence. The results from GLM3 are also, by the authors' own admission, marginal in places.

https://doi.org/10.7554/eLife.103846.1.sa2

Reviewer #2 (Public review):

Summary:
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In this paper, the authors seek to disentangle brain areas that encode the subjective value of
individual stimuli/items (input regions) from those that accumulate those values into decision
variables (integrators) for value-based choice. The authors used a novel task in which
stimulus presentation was slowed down to ensure that such a dissociation was possible using
fMRI despite its relatively low temporal resolution. In addition, the authors leveraged the fact
that gaze increases item value, providing a means of distinguishing brain regions that encode
decision variables from those that encode other quantities such as conflict or time-on-task.
The authors adopt a region-of-interest approach based on an extensive previous literature
and found that the ventral striatum and vmPFC correlated with the item values and not their
accumulation, whereas the pre-SMA, IPS, and dIPFC correlated more strongly with their
accumulation. Further analysis revealed that the pre-SMA was the only one of the three
integrator regions to also exhibit gaze modulation.

Strengths:

The study uses a highly innovative design and addresses an important and timely topic. The
manuscript is well-written and engaging, while the data analysis appears highly rigorous.

Weaknesses:
With 23 subjects, the study has relatively low statistical power for fMRI.

https://doi.org/10.7554/eLife.103846.1.sa1

Author response:

elife Assessment

This important study uses an innovative task design combined with eye tracking and
fMRI to distinguish brain regions that encode the value of individual items from those
that accumulate those values for value-based choices. It shows that distinct brain regions
carry signals for currently evaluated and previously accumulated evidence. The study
provides solid evidence in support of most of its claims, albeit with current minor
weaknesses concerning the evidence in favour of gaze-modulation of the fMRI signal. The
work will be of interest to neuroscientists working on attention and decision-making.

We thank the Editor and Reviewers for their summary of the strengths of our study, and for
their thoughtful review and feedback on our manuscript. We plan to undertake some
additional analyses suggested by the Reviewers to bolster the evidence in favor of gaze-
modulation of the fMRI signal.

Reviewer #1 (Public review):
Summary:

This study builds upon a major theoretical account of value-based choice, the 'attentional
drift diffusion model' (aDDM), and examines whether and how this might be
implemented in the human brain using functional magnetic resonance imaging (fMRI).
The aDDM states that the process of internal evidence accumulation across time should
be weighted by the decision maker's gaze, with more weight being assigned to the
currently fixated item. The present study aims to test whether there are (a) regions of the
brain where signals related to the currently presented value are affected by the
participant's gaze; (b) regions of the brain where previously accumulated information is
weighted by gaze.
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To examine this, the authors developed a novel paradigm that allowed them to dissociate
currently and previously presented evidence, at a timescale amenable to measuring
neural responses with fMRI. They asked participants to choose between bundles or
'lotteries’ of food times, which they revealed sequentially and slowly to the participant
across time. This allowed modelling of the haemodynamic response to each new
observation in the lottery, separately for previously accumulated and currently presented
evidence.

Using this approach, they find that regions of the brain supporting valuation (vmPFC and
ventral striatum) have responses reflecting gaze-weighted valuation of the currently
presented item, whereas regions previously associated with evidence accumulation
(preSMA and IPS) have responses reflecting gaze-weighted modulation of previously
accumulated evidence.

Strengths:

A major strength of the current paper is the design of the task, nicely allowing the
researchers to examine evidence accumulation across time despite using a technique
with poor temporal resolution. The dissociation between currently presented and
previously accumulated evidence in different brain regions in GLM1 (before gaze-
weighting), as presented in Figure 5, is already compelling. The result that regions such
as preSMA respond positively to |AV| (absolute difference in accumulated value) is
particularly interesting, as it would seem that the 'decision conflict' account of this
region’s activity might predict the exact opposite result. Additionally, the behaviour has
been well modelled at the end of the paper when examining temporal weighting
functions across the multiple samples.

Thank you!

Weaknesses:

The results relating to gaze-weighting in the fMRI signal could do with some further
explication to become more complete. A major concern with GLM2, which looks at the
same effects as GLM1 but now with gaze-weighting, is that these gaze-weighted
regressors may be (at least partially) correlated with their non-gaze-weighted
counterparts (e.g., SVgaze will correlate with SV). But the non-gaze-weighted regressors
have been excluded from this model. In other words, the authors are not testing for
effects of gaze-weighting of value signals *over and above* the base effects of value in
this model. In my mind, this means that the GLM2 results could simply be a replication of
the findings from GLM1 at present. GLM3 is potentially a stronger test, as it includes the
value signals and the interaction with gaze in the same model. But here, while the link to
the currently attended item is quite clear (and a replication of Lim et al, 2011), the link to
previously accumulated evidence is a bit contorted, depending upon the interpretation of
a behavioural regression to interpret the fMRI evidence. The results from GLM3 are also,
by the authors' own admission, marginal in places.

We thank the Reviewer for their thoughtful critique. We acknowledge that our formulation of
GLM2 does not test for the effects of gaze-weighted value signals beyond the base effects of
value, only in place of the base effects of value. In our revision, we plan to examine
alternative ways of quantifying the relative importance of gaze in these results.

Reviewer #2 (Public review):

Summary:

Blair Shevlin et al., 2025 eLife. https://doi.org/10.7554/eLife.103846.1 33 0f 34


https://doi.org/10.7554/eLife.103846.1

7 eLife

In this paper, the authors seek to disentangle brain areas that encode the subjective
value of individual stimuli/items (input regions) from those that accumulate those values
into decision variables (integrators) for value-based choice. The authors used a novel task
in which stimulus presentation was slowed down to ensure that such a dissociation was
possible using fMRI despite its relatively low temporal resolution. In addition, the authors
leveraged the fact that gaze increases item value, providing a means of distinguishing
brain regions that encode decision variables from those that encode other quantities
such as conflict or time-on-task. The authors adopt a region-of-interest approach based
on an extensive previous literature and found that the ventral striatum and vmPFC
correlated with the item values and not their accumulation, whereas the pre-SMA, IPS,
and dIPFC correlated more strongly with their accumulation. Further analysis revealed
that the pre-SMA was the only one of the three integrator regions to also exhibit gaze
modulation.

Strengths:

The study uses a highly innovative design and addresses an important and timely topic.
The manuscript is well-written and engaging, while the data analysis appears highly
rigorous.

Weaknesses:

With 23 subjects, the study has relatively low statistical power for fMRL.

We thank the Reviewer for their comments on the strengths of the manuscript, and for
highlighting an important limitation. We agree that the number of participants in the study,
after exclusions, was lower than your typical fMRI study. However, it is important to note that
we do have a lot of data for each subject. Due to our relatively fast, event-related design, we
have on average 65 trials per subject (SD = 18) and 5.95 samples per trial (SD = 4.03), for an
average of 387 observations per subject (SD = 18). Our model-based analysis looks for very
specific neural time courses across these ~387 observations, giving us substantial power to
detect our effects of interest. Still, we acknowledge that our small number of subjects does
still limit our power and our ability to generalize to other subjects. We plan to add the
following disclaimer to the Discussion section:

“Together with our limited sample size (n = 23), we may not have had adequate statistical
power required to observe consistent effects. Additional research with larger sample sizes is
needed to resolve this issue.”

https://doi.org/10.7554/eLife.103846.1.sa0
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